Preview

Fisheries

Advanced search

The use of microalgae in the technology of functional food compositions

https://doi.org/10.37663/0131-6184-2022-6-87-97

Abstract

Search of innovative approaches in development of health food products rich in essential food nutraceuticals is becoming increasingly important in the modern world. Microalgae as a source of biologically active compounds have shown a high potential to meet the needs of the population from a therapeutic, prophylactic and environmental point of view. The article analyzes the main nutraceuticals of microalgae (Arthrospira platensis (cyanobacterium), Dunaliella salina, Diacronema lutheri, Tetraselmis viridis), formulates food compositions of functional orientation with their use (food seasoning for minced fish and jelly concentrate), recommendations for use in health-improving diets were given.

About the Authors

L. V. Donchenko
Federal State Budgetary Educational Institution of Higher Education “Kuban State Agrarian University named after I.T. Trubilin” / (FSBEI HE Kuban SAU), Research Institute of Biotechnology and Food Certification
Russian Federation

L.V. Donchenko – Doctor of Technical Sciences, Professor, Director of the Research Institute of Biotechnology and Food Certification



O. E. Bityutskaya
Food Technology of the Kerch State Marine Technological University (KSMTU)
Russian Federation

O.E. Bityutskaya – Candidate of Technical Sciences, Associate Professor, Head of the Department



N. V. Sokol
Federal State Budgetary Educational Institution of Higher Education “Kuban State Agrarian University named after I.T. Trubilin” (FSBEI HE Kuban SAU)
Russian Federation

N.V. Sokol – Doctor of Technical Sciences, Professor, Deputy Head of the Department "Technologies of storage and processing of crop products"



L. I. Bulli
Food Technology, Kerch State Marine Technological University (KSMTU)
Russian Federation

L.I. Bulli – Candidate of Biological Sciences, Associate Professor of the Department



L. M. Esina
Azov-Black Sea Branch of the VNIRO Federal State Budgetary Educational Institution (AzNIIRH)
Russian Federation

L.M. Esina – Head of the Sector of Technology for Processing Aquatic Bioresources of the Kerch Department



N. F. Mazalova
Kerch State Marine Technological University (KSMTU)
Russian Federation

N.F. Mazalova – Candidate of Sciences of Public Administration, Associate Professor of the Department of "Food Technology"



O. V. Nikitenko
Kerch State Marine Technological University (KSMTU)
Russian Federation

O.V. Nikitenko – Head of the Educational Laboratory of the Department – Department of "Food Technology"



References

1. Caporgno M.P. Trends in Microalgae Incorportion into Innovative Food Products with Potential Health Benefits / Martin P. Caporgno, Alexander Mathys // Frontiers in Nutrition. – 2018. – Vol. 5. – Pp. 2-10. DOI: 10.3389/fnut.2018.00058.

2. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations / G. Wu, J. Fanzo, D.D. Miller, P. Pingali, M. Post, J. L. Steiner, A.E. ThalackerMercer // Ann N Y Acad. Sci. – 2014. – 1321 – Pp.1-19. DOI: 10.1111/nyas.12500.

3. Microalgae of the Black Sea: problems of biodiversity conservation and biotechnological use / Edited by Yu. N. Tokarev, 3. 3. Finenko, N. V. Shadrin; NAS of Ukraine, Institute of Biology of the South Seas. – Sevastopol: EKOSI-Hydrophysics, 2008. – 454 p.

4. Guiry M. D. Algae Base. Всемирная Электронная публикация / Guiry M. D. & Guiry GM. – Национальный университет Ирландии, Голуэй. – 2020. – URL: https://www.algaebase.org.

5. Gnatchenko L. G. Experience of intensive cultivation of microalgae spirulina (Spirulina) / L. G. Gnatchenko, I. I. Pisarevskaya, A. P. Ivanyuta // Proceedings of YugNIRO. – 1994. – Vol. 40. – Pp. 106-110.

6. Garcia J.L. Microalgae, old sustainable food and fashion nutraceuticals / Jose L. Garcia, Marta de Vicente, Beatriz Galan // Microbial Biotechnology. – 2017. – Vol. 10. – pp. 1017–1024. URL: https://doi.org/10.1111/1751-7915.12800.

7. Sorgebous L.P. Manual of the production and use of live food for aquaculture / L. P Sorgebous. – Rome : FAO, 1996. – 295 p. (FAO Fisheries Technical Paper; no. 361).

8. Instructions for mass breeding of marine unicellular algae and rotifers / L. V. Spectorova, S. L. Pankov, E. S. Proskurina, S. V. Shershov, [et al.]. – M.: VNIRO, 1986. – 63 p.

9. Shaish A. Effect of inhibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil / A. Shaish, M. Avron & A. Ben-Amotz // Plant and cell physiology, 1990. – 31(5). – pp. 689–696. DOI: 10.1093/oxfordjournals.pcp.a077964.

10. Mitchell H.H. Some relationships between the amino acid contents of proteins and their nutritive values for the rat / H. H. Mitchell, R. J. Block // J. biol. Chem. –1946. – 69(4). – pp. 387–91. DOI:10.1093/jn/69.4.387.

11. Pat. 2320195 Russian Federation, IPC A23J3/20, A23J3/32, C12N1/12, C09B061/00. A method for obtaining a protein preparation from cyanobacteria / Maso V. K., Gmoshinsky I. V.; applicant and patent holder: V. K. Maso. – No. 2006118740/13; application No. 31.05.2006; publ. 27.03.2008. – Byul. No. 9.

12. Pat. 2277124 Russian Federation, IPC C12N1/12, C12R1/89. A method for obtaining zinc-enriched biomass of spirulina (Spirulina) [Text] / Victoria Viktorovna Popova (RU), Natalia Alexandrovna Pronina (RU), Anna Alexandrovna Nalimova (ru) and [others.]; patent holder: K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences (RU). – No. 2004136239/13; application No. 10.12.2004; publ. 27.05.2006. – Byul. No. 22.

13. Pat. Russian Federation 2199582, C12N1/12, A61K33/04, A23L1/337, C12N1/12, C12R1:89. Method for obtaining seleniumenriched biomass of spirulina (Spirulina) / Pronina N. A., Kovshova Yu. I., V. Popova. V., and [others.]; patent holder: K. A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences (RU). – No. 2000126580/13; application No. 24.10.2000; publ. 27.02.2003. – Byul. No. 6.

14. Beregovaya N.M. Methods of obtaining and using C-phycocyanin (review) / N.M. Beregovaya // Ecology of the sea. – 2010. – Spec. issue 80. – Pp. 12-16.

15. Rudik V. Method of obtaining phycocyanin from Spirulina platensis (North America) Gaitl. / V. Rudik, V. Bulmaga // Algologiya. – 2000. – 10, № 2. – Pp. 350-354.

16. Pat. 3781 MD, C12N1/12. A method for obtaining an antioxidant thermostable drug from the biomass of cyanobacterium Spirulina platensis / Rudik V., Bulmaga V., Efremova N. (MD). - Announced 18.03.2008, BOPI No. 12/2008. The date of issue of the patent is 2009.08.31. URL: http://aitt.asm.md/files/tmp/366.384.40_Procedeu_nou_de_obээinere_a_preparatului_antioxidant_rus [1].

17. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae C. Romay, J. Armesto, D. Remirez, R. González, N. Ledon, I. García // Inflamm Res. – 1998. – 47(1). – Pp. 36-41. DOI: 10.1007/s000110050256.

18. Hirata, T. Antioxidant activities of phycocyanobillin prepared from Spirulina platensis / T. Hirata, M. Tanaki, M. Ooike, T. Tsunomura, M. Sagakuchi // J. Appl. Phycol. – 2000. – Vol. 3. – Pp. 435-439.

19. Sonani R.R. Recent advances in production, purification and applications of phycobiliproteins / R.R. Sonani, R.P. Rastogi, R. Patel & D. Madamwar // World Journal of Biological Chemistry. – 2016. – 7(1). – Pp. 100-109. – URL: http://dx.doi.org/10.4331/wjbc.v7.i1.100. PMid:26981199.

20. Pereira C.S. Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2 / C. S. Pereira, A. J. Santos, M. Bejerano-Sagie, P.B. Correia, J.C. Marques and K. B. Xavier // Mol. Microbiol. – 2012. – 84. – Pp. 93-104. DOI: 10.1111/j.1365-2958.2012.08010.x.

21. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. / T. C. Adarme-Vega, S. R. Thomas-Hall, D. K. Lim and P. M. Schenk // Mar. Drugs. – 2014. – 12. – Pp. 3381-3398. DOI: 10.3390/md12063381.

22. Bishop W.M. Evaluation of microalgae for use as nutraceuticals and nutritional supplements / W.M. Bishop and H.M. Zubeck // J. Nutr. Food Sci. – 2012. – 2. – Pp. 147. DOI: 10.4172/2155-9600.1000147.

23. Sun M. Phylogeny of the Rosidae: A dense taxon sampling analysis / M. Sun, R. Naeem, J. X. Su, Z. Y. Cao, J. G. Burleigh, P. S. Soltis, D. E. Soltis & Z.D. Chen // Journal of Systematics and Evolution. – 2016. – 54(4). – Pp. 363-391.

24. Development of methods for isolating radioprotective and insulinlike BAS from hydrobionts: research report / YugNIRO; hand of topic No. 12: A.G. Gubanova; executor: G.S. Khristoferzen, L.Ya. Polishchuk, L.P. Borisova, O.E. Bityutskaya, and [others]. – Kerch: YugNIRO Publishing House, 1994. – 71 p. – Bibliogr.: pp. 66-71. – No. GR 78020859. – Inv. B-814808.

25. Verushkina O.A. Aral strain of microalgae Dunaliella Salina AR-1 as a source of biologically active substances / O.A. Verushkina, E.N. Baymurzaev, A.K. Tonkikh // Universe: chemistry and biology: electron. scientific. journal. – 2022. – 5(95). – URL: https://7universum.com/ru/nature/archive/item/1358

26. Henríquez, V. Carotenoids in microalgae / V. Henríquez, C. Escobar, J. Galarza and J. Gimpel // Subcell Biochem. – 2016. – 79. – Pp. 219- 237.

27. Luo X. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications / X. Luo, P. Su, W. Zhang // Mar Drugs. – 2015. – Vol. 13. – Pp. 4231-4254.

28. Plaza M. Screening for bioactive compounds from algae / M. Plaza, S. Santoyo, L. Jaime, G.-B. Reina, G., M. Herrero, F. J. Señoráns, E. Ibáñez // J. Pharm. Biomed. Anal. – 2010. – 51 (2). –Pp. 450-455. – URL : https://doi.org/10.1016/j.jpba.2009.03.016.

29. Biologically Active Metabolites Synthesized by Microalgae / Michele Greque de Morais, Bruna da Silva Vaz, Etiele Greque de Morais, and Jorge Alberto Vieira Costa // BioMed Research Internationa. – 2015. – Article ID 835761. – URL : https://doi.org/10.1155/2015/835761.

30. The use of Dunaliella Salina microalgae extract in the technology of jelly-fruit marmalade / E.A. Kuznetsova, Ya. Brindza, E.V. Klimova, A.B. Borovkov and others // Food industry. – 2019. – Vol. 4 – No. 2. – Pp. 14-17.

31. Development of a preparation of a biologically active additive based on the biomass of Tetraselmis viridis algae / E.A. Kuznetsova, V.A. Gavrilina, E.V. Klimova, Ya. Brindza and others // Technology and commodity science of innovative food products. – 2021. – No. 3. – Pp. 46-50.

32. Shalygo N. Medical aspects of algology / Nikolay Shalygo // Science and Innovation. – 2018. – № 2(180). – Pp. 20-23. – URL: https://cyberleninka.ru/article/n/meditsinskie-aspekty-algologii/viewer.

33. Comparative effects of biomass pre-treatments for direct and indirect transesterification to enhance microalgal lipid recovery / Naghdi, F. G., Thomas-Hall S. R., Durairatnam R., Pratt S., Schenk P. M. // ORIGINAL RESEARCH article Front. Energy Res., 04 December 2014. Sec. Bioenergy and Biofuels. – URL: https://doi.org/10.3389/fenrg.2014.00057.

34. Pat. 2450522 Russian Federation, IPC A21D2/36, A21D8/02. Method of production of bakery products for preventive nutrition / Belyavskaya Irina Georgievna (RU) Lyamin Mikhail Yakovlevich (RU), Chernykh Valery Yakovlevich (Rus.), Grishina Larisa Nikolaevna T. (ru); patent holder: Federal State Budgetary Educational Institution of Higher Professional Education "Moscow State University of Food Production" (RU). – No. 2010148012/13; application 25.11.2010; publ. 20.05.2012. – URL: http://ru-patent.info/24/50/2450522.html.

35. Technology of functional food products: a monograph / A.A. Mazaraki, M.I. Peresychny, M. F. Kravchenko, and [others]; edited by Dr. of Technical Sciences prof. M. I. Peresychny. – 2-nd ed. – k.: Kiev. national trade.-ekon. un-t, 2012. – 1116 p. (Ukrainian).

36. Bidikhova M. E. Intensification of fermentation in brewing using the drug Spirulina platensis: abstract. dis. on the job. learned. step. Candidate of Technical Sciences (18.05.07) / Bidikhova Marina Elbrusovna - Moscow, 2003. – 182 p.

37. Pat. 2321272 Russian Federation, IPC A23L1/337 A23L1/09. Microalgae product and method of its production [Electronic resource] / Mishenkov Igor Yuryevich (RU), Baleyko Sergey Pavlovich (RU), Romanov Evgeny Aleksandrovich T. (ru); patent holder: Mishenkov Igor Yuryevich (RF); publ. 10.04.2010. – URL: http://www.findpatent.ru/patent/232/2321272.html .

38. Lanskaya L.A. Cultivation of algae // Ecological physiology of marine planktonic algae (in culture conditions). – Kiev: Naukova dumka, 1971. – pp. 5-21.

39. Chen B.J. Process development and evaluation for algal glycerol production / B. J. Chen, C. H. Chi // Biotechnol Bioengin. – 1981. – 23. – Pp. 1267-1287. DOI: 10.1002/bit.260230608.

40. St-Onge, M.-P. Consumption of a Functional Oil Rich in Phytosterols and Medium-Chain Triglyceride Oil Improves Plasma Lipid profiles in Men / Marie-Pierre St-Onge, Benoit Lamarche, Jean-Francois Mauger, Peter J. H. Jones // Journal of Nutrition. – No. 133. – Pр. 1815-1820. DOI:10.1093/jn/133.6.1815.

41. De Stefani E. Plant Sterols and Risk of Stomach Cancer: A CaseControl Study in Uruguay / Eduardo De Stefani, Paolo Boffetta, Alvaro L. Ronco, Paul Brennan, Hugo Deneo-Pellegrini, Julio C. Carzoglio & Maria Mendilaharsu // Nutrition and Cancer. – 2000. – Vol. 379(2). – Pp. 140- 144. PMID: 11142085.

42. Oxoalkenyl substituted cyclohexenes. Ionones, methylionones and ions with the smells of violets, raspberries and iris / A.T. Soldatenkov, N.M. Kolyadina, Le Tuan An and [others] // Fundamentals of organic chemistry of fragrant substances for applied aesthetics and aromatherapy / edited by A. T. Soldatenkov. – M.: ICTS Akademkniga, 2006. – 240 p.

43. Meireles, Luís A. Lipid Class Composition of the Microalga Pavlova lutheri: Eicosapentaenoic and Docosahexaenoic Acids / Luís A. Meireles, Catarina A. Guedes, F. Xavier Malcata // Journal of Agricultural and Food Chemistry. – 2003. – 51 (8). – Pp. 2237-41. DOI: 10.1021/jf025952y.

44. Borowitzka M.A. Biology of Microalgae. Chapter 3 / M. A. Borowitzka // Microalgae in Health and Disease Prevention. – ACADEMIC PRESS, 2018. – Pp. 23-72. DOI: 10.1016/B978-0-12-811405-6.00003-7.

45. Geovanna P.-R. Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides from Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions / Parra-Riofrío Geovanna; García-Márquez, Jorge; Casas-Arrojo, Virginia; Uribe-Tapia, Eduardo; Abdala-Díaz, Roberto Teófilo // Mar Drugs. – 2020. – Vol. 18 (11): 534. DOI: 10.3390/md18110534.

46. Mendiola J.A. Screening of functional compounds in supercritical fluid extracts from Spirulina platensis / J. A. Mendiola, L. Jaime, S. Santoyo, G. Reglero, A. Cifuentes, E. Ibañez, F. J. Señoráns // Food Chem. – 2007. – Vol. 102. – Pp. 1357-1367. DOI: 10.1016/j.foodchem.2006.06.068.

47. Sun L. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities / L. Sun, C. Wang, Q. Shi, C. Ma // Int. J. Biol. Macromol. – 2009. – Vol. 45. – Pp. 42-47. DOI: 10.1016/j.ijbiomac.2009.03.013.

48. De Jesus Raposo M.F. Bioactivity and Applications of Polysaccharides from Marine Microalgae / Maria F. de Jesus Raposo, Rui M.S.C. Morais, Alcina M.de Morais // Mar Drug. – 2013. – Vol. 4511(1). – Pp. 233-252. DOI i: 10.3390/md11010233.

49. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies / Yukio Yamori, Takashi Taguchi, Atsumi Hamada, Kazuhiro Kunimasa, Hideki Mori, Mari Mori // J Biomed Sci. – 2010. – 17. Suppl 1: S6. DOI: 10.1186/1423-0127-17-S1-S6.

50. Huxtable R. J. Physiological actions of taurine / R. J. Huxtable // Physiol Rev. – 1992. – Vol. 72(1). – Pp. 101-63. DOI: 10.1152/physrev.1992.72.1.101.

51. Seidel, U. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function / Ulrike Seidel, Patricia Huebbe, Gerald Rimbach // Mol Nutr Food Res. – 2019. – Vol. 63(16): e1800569. DOI: 10.1002/mnfr.201800569.

52. Ito T. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II / Takashi Ito, Stephen Schaffer, Junichi Azuma // Amino Acids. – 2014. – Vol. 46(1). – Pp. 111-9. DOI: 10.1007/s00726-013-1507-z.

53. Frolov A.V. The effect of the composition of fatty acids of feed on survival, growth rate and lipid composition of Artemia Salina // In Sat. Feeds and methods of feeding mariculture objects. – M.: VNIRO, 1988. – Pp. 20-37.

54. Scott A.P. Unicellular algae as a food for turbot (Scophthalmus maximus L.) larvae the importance if dietary long-chain polyunsaturated fatty acids / A. P. Scott, C. Middelton // Aquaculture. – 1979. – Vol. 18. – Pр. 227-240. – URL: https://doi.org/10.1016/0044-8486(79)90014-0.

55. Cakmak Y.S. Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga / Y. S. Cakmak, M. Kaya, M. A. Ozusaglam // EXCLI Journal – 2014. – Vol. 13. – Pp. 679-690. – URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4464408.

56. Gladyshev M.I. Essential polyunsaturated fatty acids and their food sources for humans / M.I. Gladyshev // Journal of the Siberian Federal University. Biology. - 2012. – Vol. 5. - Pp. 352-386. – URL: https://elib.sfukras.ru/bitstream/handle/2311/9554/Gladyshev.pdf?sequence=1.


Review

For citations:


Donchenko L.V., Bityutskaya O.E., Sokol N.V., Bulli L.I., Esina L.M., Mazalova N.F., Nikitenko O.V. The use of microalgae in the technology of functional food compositions. Fisheries. 2022;(6):87-97. (In Russ.) https://doi.org/10.37663/0131-6184-2022-6-87-97

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0131-6184 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).