Identification of red king crab Paralithodes camtschaticus juveniles for artificial reproduction
https://doi.org/10.36038/0131-6184-2024-6-77-82
Abstract
Due to the ongoing intensive fishing of the red king crab Paralithodes camtschaticus, its artificial reproduction followed by the release of juveniles is the optimal strategy for the restoration and maintenance of commercial stocks. Evaluation of the effectiveness of such measures is possible using genetic markers such as microsatellite loci. In the course of our work, we were able to identify direct genetic links between mothers and descendants of the red king crab during the first stage of work on genetic profiling of juveniles in conditions of artificial breeding. Thus, we can assess the contribution of each maternal individual to the genetic characteristics of the population released into the natural conditions of the Peter the Great Bay.
About the Authors
E. I. BondarRussian Federation
Evgeniya I. Bondar – Candidate of Biological Sciences, Researcher, Laboratory of Genetics
690041, Vladivostok, Palchevskogo str., 17
S. I. Maslennikov
Russian Federation
Sergey I. Maslennikov – Candidate of Biological Sciences, Associate Professor, Senior Researcher, Laboratory of Marine Ecosystem Dynamics
690041, Vladivostok, Palchevskogo str., 17
N. M. Batishcheva
Russian Federation
Natalia M. Batishcheva – Junior Researcher, Laboratory of Genetics
690041, Vladivostok, Palchevskogo str., 17
References
1. Maslennikov S. I. (1998). Technology of crab farming in the waters of the Far Eastern seas // Far East of Russia: economics, investments, market conditions. No. 1. Pp. 34-38. (In Russ.).
2. Maslennikov S. I., Kashin I. A., Levin V. S. (1999). Fishing and reproduction of the red king crab off the coast of Primorye // Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. Vol. 3. Pp. 100-106. (In Russ.).
3. Paul A. J. (2002). Crabs in cold water regions: biology, management and economics.
4. Buyanovsky A. I., Alekseev D. O., Sologub D. O., Bizikov V. A. (2023). Stock dynamics and regulation of crab fishing in the seas of Russia – M.: VNIRO. 323 p.
5. Kovacheva N. P. et al. (2022). Modern trends in the development of crustacean aquaculture in Russia // Topical issues of freshwater aquaculture. Pp. 69-80. (In Russ.).
6. Kovacheva N. P. et al. (2022). Aquaculture of the red king crab. (In Russ.).
7. Gevorgyan T. A., Maslennikov S. I., Shchukina G. F. (2022). Problems of artificial reproduction of the red king crab Paralithodes camtschaticus (Tilesius, 1815) // Biology of the sea. Vol. 48. No. 6. pp. 359-368. https://doi.org/10.31857/S0134347522060055. (In Russ.).
8. Liu Z. J., Cordes J. F. (2004). DNA marker technologies and their applications in aquaculture genetics // Aquaculture. vol. 238. No. 1-4. Pp. 1-37 https://doi.org/0.1016/j.aquaculture.2004.05.027.
9. O’connell M., Wright J. M. (1997). Microsatellite DNA in fishes // Reviews in fish biology and fisheries. Vol. 7. Pp. 331-363. https://doi.org/10.1023/A:1018443912945.
10. Truett G. E. et al. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) // Biotechniques. Vol. 29. No. 1. Pp. 52-54. https://doi.org/10.2144/00291bm09.
11. Seeb L. W. et al. (2002). Development of microsatellite loci in red king crab (Paralithodes camtschaticus) // Molecular Ecology Notes. Vol. 2. No. 2. Pp. 137-138. https://doi.org/10.1046/j.1471-8286.2002.00178.x
12. Stoutamore J. L. et al. (2012). Development of polymorphic microsatellite markers for blue king crab (Paralithodes platypus) // Conservation Genetics Resources. vol. 4. Pp. 897-899. https://doi.org/10.1007/s12686-012-9668-8.
13. Peakall R. O. D., Smouse P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research // Molecular ecology notes. vol. 6. No. 1. Pp. 288-295. https://doi.org/10.1093/bioinformatics/bts460.
14. Van Oosterhout C. et al. (2004). MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Molecular ecology notes. Vol. 4. No. 3. Pp. 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x.
15. Raymond M., Rousset F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. https://doi.org/10.1093/oxfordjournals.jhered.a111573.
16. Excoffier L., Lischer H. E. (2010). L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows // Molecular ecology resources. Vol. 10. No. 3. Pp. 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.
17. Jones O. R., Wang J. (2010). COLONY: a program for parentage and sibling inference from multilocus genotype data // Molecular ecology resources. vol. 10. No. 3. Pp. 551-555. https://doi.org/10.1111/j.1755-0998.2009.02787.x.
18. Zelenina D. A. et al. (2008). Red king crab (Paralithodes camtschaticus) in the Barents Sea: a comparative study of introduced and native populations // Russian Journal of Genetics. Vol. 44. Pp. 859-866. https://doi.org/10.1134/S1022795408070144.
19. Vulstek S. C. et al. (2013). Spatio-temporal population genetic structure and mating system of red king crab (Paralithodes camtschaticus) in Alaska // Journal of Crustacean Biology. vol. 33. No. 5. Pp. 691-701. https://doi.org/10.1163/1937240X-00002173.
20. Jørstad K. E. et al. (2007). The genetic variability of the red king crab, Paralithodes camtschatica (Tilesius, 1815) (Anomura, Lithodidae) introduced into the Barents Sea compared with samples from the Bering Sea and Kamchatka region using eleven microsatellite loci // Hydrobiologia. Vol. 590. Pp. 115-121. https://doi.org/10.1007/s10750-007-0763-x.
21. Levin V.S. (2001). Red king crab Paralithodes camtschaticus. Biology, fishing, reproduction. – St. Petersburg: Izhitsa. 196 p. (In Russ.).
Review
For citations:
Bondar E.I., Maslennikov S.I., Batishcheva N.M. Identification of red king crab Paralithodes camtschaticus juveniles for artificial reproduction. Fisheries. 2024;(6):77-82. (In Russ.) https://doi.org/10.36038/0131-6184-2024-6-77-82