Ecological and epigenetic impact on artificially bred Pacific salmon of the genus Oncorhynchus
https://doi.org/10.37663/0131-6184-2023-6-28-41
Abstract
The fundamental reasons for the decline in the number of natural salmon herds in the countries of the northern Pacific basin and in the southern waters of the Russian Far East are given. It is shown how the scientifically unjustified creation of a system of salmon hatcheries caused the formation of negative ecosystem, social and economic consequences from large-scale artificial cultivation of all types of Pacific salmon. The colossal influence of ecological and epigenetic influence on the transformation of ontogenesis, reduction of vitality and reproduction of healthy offspring, loss of navigation-innate instinct (homing) in artificially raised Pacific salmon of the genus Oncorhynchus is considered.
Keywords
About the Author
V. V. VorobyovRussian Federation
Vorobyov Valery Vasilyevich – Doctor of Technical Sciences, Academician of the Russian Academy of Sciences, expert
600901, Vladimir, md. Yuryevets
References
1. Bondarenko A. (2022). In the Far East, forecasts for salmon putin-2022 were announced. // Rossiyskaya Gazeta – Economics of the Far East, February 25. No. 41 (8689). (In Russ.).
2. Vorobyev V.V. (2021). Integrative technology of Pacific salmon caviar with biologically and epigenetically active components – Moscow: KnigIzdat. 732 p. (In Russ.).
3. Gritsenko O.F., Zavarina L.O., Kovtun A.A., Putivkin S.V. (2000). Ecological consequences of large-scale artificial breeding of chum salmon // Commercial and biological studies of fish in the Pacific waters of the Kuril Islands and adjacent areas of the Okhotsk and Bering Seas in 1992-1998: M.: Collection of scientific tr. VNIRO. Pp. 241-246. (In Russ.).
4. Gordovskaya S.B., Sushkevich A.S. (2019). Violation in the development of ovaries of young Pacific salmon in the early marine period in the Sea of Okhotsk in 2014 and 2016-2016. Pacific salmon in the world of human relationships: economic, social, ecological, historical, ethnic and cultural: Abstracts of reports of International Scientific and Practical. the seminar. Petropavlovsk-Kamchatsky: Publishing house "Kamchatpress". Pp. 18-20. (In Russ.).
5. Zaporozhets G.V. (1989). Change in the trace element composition of artificially grown juvenile chum salmon and coho salmon with cataract disease // Ecological physiology and biochemistry of fish. Vol. 1. Abstracts of the VII All-Russian Conference. Yaroslavl. Pp. 145-146.
6. Zaporozhets G.V., Zaporozhets O.M. (2011). Salmon hatcheries of the Far East in the ecosystems of the Northern Pacific. Petropavlovsk-Kamchatsky: Kamchatpress. 268 p. (In Russ.).
7. Zaporozhets G.V., Zaporozhets O.M. (2017). Return structure, abundance and biological characteristics of factory and wild chum salmon in the basin of the Paratunka River (southeastern Kamchatka) in 2010-2015. // Izv. TINRO. Vol. 190. Pp. 49-61. (In Russ.).
8. Zaporozhets O.M. (2006). Electromagnetic characteristics of salmon habitat in nature and in artificial growing conditions // Modern problems of salmon fish hatcheries of the Far East: materials of the international scientific and practical seminar, November 30-December 1, 2006 in Petropavlovsk-Kamchatsky within the framework of the VII scientific conference "Conservation of biodiversity of Kamchatka and adjacent seas". Petropavlovsk-Kamchatsky: Kamchatka Printing Yard. Book publishing house. Pp. 124-129. (In Russ.).
9. Zaporozhets O.M. (1990). The influence of anthropogenic geomagnetic anomalies on the life stability of caviar and juveniles of Pacific salmon raised in industrial conditions. Abstract. ... cand. biol. nauk / VNIIPRH. Moscow. 24 p. (In Russ.).
10. Zaporozhets O.M. (1990). Comparative analysis of the characteristics of the geomagnetic field in places of natural habitat and artificial cultivation of fish // Tez. dokl. 2 Vses. Inter disciplinary scientific and technical school-seminar "Non-periodic fast-flowing phenomena in the environment". Tomsk, April 1990. Pp. 53-54. (In Russ.).
11. Klovach N.V. (2003). Ecological consequences of large–scale chum salmon breeding. M.: VNIRO Publishing house. 164 p. (In Russ.).
12. Klyashtorin L.B. (2000). Pacific salmon: climate and stock dynamics // Fisheries. No. 4. Pp. 32-34. (In Russ.).
13. Korostelev S.G., Kislyak Yu.V. (2019). What threatens Kamchatka salmon? Pacific salmon in the world of human relationships: economic, social, ecological, historical, ethnic and cultural: Abstracts of reports of International Scientific and Practical. the seminar. – Petropavlovsk-Kamchatsky: Publishing house "Kamchatpress". Pp. 31-35.
14. Ksenofontov M.Yu., Goldenberg I.A. (2008). Economics of salmon farming in Kamchatka. Analysis of the fisheries complex of the Bolshaya River basin and development of proposals to improve the efficiency of the use of salmon resources in order to develop sustainable fisheries and preserve species diversity. Moscow: Human Rights. 152 p. (In Russ.).
15. Lipton Bruce. (2018). The Biology of Faith: how the power of beliefs can change your body and mind. Translated from the English by D. Finger, G. Vlasova. – Moscow: Eksmo. 352 p. (In Russ.).
16. Lipton Bruce. (2016). Smart Cells: The Biology of Beliefs. How thinking affects genes, cells, DNA. Trans. from English – M.: Publishing house "Sofia". 224 p. (In Russ.).
17. Likhatovich D. (2004). Salmon without rivers. The history of the Pacific salmon crisis. Vladivostok: Publishing House "Far East". 376 p. (In Russ.).
18. Meerson F.Z. (1981). Adaptation, stress and prevention. M.: Nauka. 278 p. (In Russ.).
19. Radchenko V.I. (2021). State of stocks and fisheries of pink salmon ONCORHYNCHUS GORBUSCHA and chum salmon O. KETA (SALMONIDAE, SALMONIFORMES) in areas of their mass artificial reproduction // Fishing issues. Volume 22. No. 4. Pp. 140-181. DOI: 10.36038/0234-2774-2021-22-4-140-181. (In Russ.).
20. Stekolshchikova M.Yu. (2015). Some results of monitoring of factory herds of pink salmon hall. Aniva (Sakhalin Island) // Izv. TINRO. Vol. 183. Pp. 51-60. (In Russ.).
21. Chmilevsky D.A. (1991). Fish oogenesis as a sensitive test system under the influence of factors of various nature // Tez. dokl. V All-Russian Conference on early fish ontogenesis. Astrakhan. 1-3.10.1991, Moscow: VNIRO. Pp. 218-219. (In Russ.).
22. Shevlyakov E.A., Chistyakova A.I. (2017). Migrations of juvenile chum salmon in the Sea of Okhotsk, comparative analysis of the efficiency of the enterprises of the fish-breeding complex of the Far East of Russia and Japan // Izv. TINRO. Vol. 191. Pp. 79-96. (In R uss.).
23. Shuntov V.P., Dark O.S. (2004). Is the ecological capacity of the Northern Pacific exceeded due to the high number of salmon: myths and reality // Izv. TINRO. 138. Pp. 19-36. (In Russ.).
24. Shuntov V.P., Dark O.S., Naidenko O.S. (2019). Once again about the factors limiting the number of Pacific salmon (Oncorhynchus spp., sem. Salmonidae) in the oceanic period of their life // Izv. TINRO. Vol. 196. Pp. 3-22. (In R uss.).
25. Epigenetics. Edited by S.D. Ellis, T. Jenuwein, D. Reinberg. – Moscow: Technosphere. 2010. 496 p. (In R uss.).
26. Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. N 308. Р. 1466-1469
27. Araki H., Berejikian B.A., Ford M.J., Blouin M.S. (2008). Fitness of hatchery-reared salmonids in the wild // Evol. Appl. V. 1. № 2. P. 342-355.
28. Azumaya T., Ishida Y. (2000). Density interactions between pink salmon (Oncorhynchus gorbuscha) and chum salmon (O. keta) and their possible effects on distribution and growth in the North Pacific Ocean and Bering Sea // N. Pac. Anadr. Fish Comm. Bull. 2. P. 165-174.
29. Beetz J.L. (2009). Marine survival of coho salmon (Oncorhynchus kisutch) in Washington State: Characteristic patterns and their relationships to environmental and biological factors. Master’s thesis. Seattle. University of Washington. 118 p.
30. Bigler B.S., Welch D.W., Helle J.H. (1996). A review of size trends among North Pacific salmon Oncorhynchus spp. // Can. J. Fish. Aquat. Sci. 53: 455-465.
31. Chen R.Z., Pettersson U., Beard C., Jackson-Grusby L., Jaenisch R. (1998). DNA hypomethyation leads to elevated mutation rates. Nature. N 395. P. 89-93.
32. Christie M.R., Marine M.L., Fox S.E. et al. (2016). A single generation of domestication heritably alters the expression of hundreds of genes // Nat. Commun. V. 7. № 10676
33. Christie M.R., Marine M.L., French R.A., Blouin M.S. (2012). Genetic adaptation to captivity can occur in a single generation // PNAS. V. 109. № 1. Pp. 238-242
34. Davis M.W. (2007). Simulated fishing experiments for predicting delayed mortality rates using reflex impairment in restrained fish // ICES J. Mar. Sci. V. 64. Pp. 1535-1542.
35. Fuss H.J. (1995). Hatcheries are a tool: they are as good or as bad as the management goals that guide them // Washington Department of Fich and Wildlife Hatcheries Program. Olympia, Washington. 19 p.
36. Hiroi O. (1998). Historical Trends of Salmon Fisheries and Stock Conditions in Japan // N. Pac. Anadr. Fish Comm. Bull. № 1. Pp. 23-27.
37. Kaeriyama M. (1996). Changes in Body Size and Age at Maturity of a Chum Salmon, Oncorhynchus keta. Population Released from Hokkaido in Japan. National Salmon Hatchery, Sapporo, Japan. NPAFC Doc. N 208. 9 p.
38. Kitada S., Kishino K. (2021). Population structure of chum salmon and selection on the markers collected for stock identification // Ecol. Evol. V. 11. Pp. 13972-13985.
39. Klovatch N.V. (2001).The Loss of Navigational Abilities as a Mortality Factor of Salmon During the Marine Period of Life // Proceedings of the 20th Northeast Pacific Pink and Chum Workshop. Seattle. USA. March 21-23. Pp. 115-123.
40. Kobayashi T. (1980). Salmon propagation in Japan // Salmon Ranching. Academic Press, London. Pp. 91-107.
41. Labelle M., Walters C.J., Riddell B. (1997). Ocean survival and exploitation of Coho Salmon (Oncorhynchus kisutch) stocks from the east coast of Vancouver Island, British Columbia // Can. J. Fish. Aquat. Sci. V. 54. Pp. 1433-1449.
42. Le Luyer J., Laporte M., Beacham T.D. et al. (2017). Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon // Proc. Natl. Acad. Sci. USA. 6 p.
43. Madaro A., Olsen R.E., Kristiansen T.S. et al. (2015). Stress in Atlantic salmon: response to unpredictable chronic stress // J. Exp. Biol. V. 218. Pp. 2538-2550.
44. Ojaveer H., Tomkiewicz J., Arula T., Klais R. (2015). Female ovarian abnormalities and reproductive failure of autumnspawning herring (Clupea harengus membras) in the Baltic Sea // ICES J. Mar. Sci. V. 72. Pp. 2332-2340.
45. Power M. (1997). Assessing the effects of environmental stressors on fish populations // Aquat. Toxicol. V. 39. Pp. 151-169.
46. Razin A., Rigss A.D. (1980). DNA hypomethyation and gene function // Sience. N 210. Pp. 604-610.
47. Ruggerone G.T., Irvine J.R. (2018). Numbers and biomass of natural- and hatchery-origin pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean, 1925-2015 // Mar. Coast. Fish. V. 10. Pp. 152-168
48. Schreck C.B., Contreras-Sanchez W., Fitzpatrick M.S. (2001). Effects of stress on fish reproduction, gamete quality, and progeny // Aquaculture. V. 197. Pp. 3-24.
49. Shimizu T., Ban M., Miyauchi Y. et al. (2016). Nutritional condition of hatchery and wild chum salmon Oncorhynchus keta fry migrating down the Chitose River // Journal of Fisheries Technology. V. 8. № 2. Pp. 89-9 4.
50. Sweeting R.M., Beamish R.J., Neville C.M. (2004). Crystalline otoliths in teleosts: Comparisons between hatchery and wild Coho Salmon (Oncorhynchus kisutch) in the Strait of Georgia // Rev. Fish Biol. Fish. V. 14. Pp. 361-369.
51. Taylor J.E. (1999). Making salmon: An Environmental History of the Northwest Fisheries Crisis. University of Washington Press, Seattle. Washington. 488 p.
52. Tillotson M.D., Barnett H.K., Bhuthimethee M. et al. (2019). Artificial selection on reproductive timing in hatchery salmon drives a phenological shift and potential maladaptation to climate change // Evol. Appl. V. 12. Pp. 1344-1359.
53. Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature. N 150. Рp. 563-565.
54. Waterland R.A. and Jirtle R.L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. N 23. Рp. 5293-5300.
Review
For citations:
Vorobyov V.V. Ecological and epigenetic impact on artificially bred Pacific salmon of the genus Oncorhynchus. Fisheries. 2023;(6):28-41. (In Russ.) https://doi.org/10.37663/0131-6184-2023-6-28-41























