Hydrodynamics of Tight Rigid Nodeless Structures
https://doi.org/10.37663/0131-6184-2023-3-96-102
Abstract
Rigid netting structures are elements, parts of commercial fishing gear and aquaculture cages. They serve to enclose or filter hydrobionts, they are engineering structures. Rigid netting structures can be used as inserts in commercial fishing gear, as well as selective gratings and elements that prevent hydraulic backwater in trawls. They are also elements of stationary fishing gear, such as winders or other fishing gear or barriers. In aquaculture cages, rigid netting structures, the elements of which have a sufficiently large value of the longitudinal and transverse modulus of elasticity E, are parts that ensure the strength of the netting structures. Mesh rigid structures are made of plastic or aluminum rods in the form of cylinders, which can be either smooth or twisted. The article considers the application of a numerical method for determining the hydrodynamic characteristics of mesh rigid structures using the software developed by the authors. A schematization of a rigid netting structure, a mathematical model based on Navier-Stokes partial differential equations, a computational domain, initial and boundary conditions are proposed. The calculation was carried out on a regular computational grid using an implicit finite-difference scheme using the methods of coordinate-wise splitting, linearization of nonlinear equations with subsequent correction of nonlinear coefficients, and solution of the obtained tridiagonal systems by the sweep method. The results of numerical experiments are presented in the form of visualization of pressure on the surface of various mesh structures at various angles of attack.
About the Authors
A. A. NedostupRussian Federation
Alexander A. Nedostup – Candidate of Technical Sciences, Associate Professor, Head of the Department of Industrial Fisheries
1 Sovetsky Prospekt, Kaliningrad, 236022
A. O. Razhev
Russian Federation
Alexey O. Razhev – Candidate of Technical Sciences, Leading researcher
1 Sovetsky Prospekt, Kaliningrad, 236022
P. V. Nasenkov
Russian Federation
Pavel V. Nasenkov – junior researcher
1 Sovetsky Prospekt, Kaliningrad, 236022
E. I. Sergeev
Russian Federation
Egor I. Sergeyev – graduate student of the Department of Industrial Fisheries
1 Sovetsky Prospekt, Kaliningrad, 236022
I. S. Belozer
Russian Federation
Ivan S. Belozer – Master's student of the Department of Industrial Fisheries
1 Sovetsky Prospekt, Kaliningrad, 236022
References
1. Nedostup A.A., Razhev A.O. Modeling of fishing tools and processes. Part I: Study guide. Kaliningrad: Publishing house of FGBOU VO "KSTU". 2019. 433 p. (In Russ.).
2. Nedostup A.A., Razhev A.O. Modeling of fishing tools and processes. Part II: Study guide. Kaliningrad: Publishing house of FGBOU VO "KSTU". 2019. 444 p. (In Russ.).
3. Fredriksson D.W., Swift M.R., Irish J.D., Tsukrov I., Celikkol B. (2003). Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquacult. Eng. 27. Pp.117-146.
4. Lader P.F., Enerhaug B. (2005).Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE J. Oceanic Eng. 30 (1). Pp. 79-84.
5. Suhey J.D., Kim N.H., Niezrecki C. (2005). Numerical modeling and design of inflatable structures-application to open-ocean-aquaculture cages. Aquacult. Eng. 33, Pp. 285-303.
6. Siromskaya T.V., Surkov N.A., Nemidova A.A., Chagai T.A., Girn A.V. Technology of manufacturing mesh structures from composite materials / Actual problems of aviation and cosmonautics. 2019. Volume 1. Pp. 350-352. (In Russ.).
7. Azarov A.V. The problem of designing aerospace mesh composite structures. Solid state mechanics. 2018. No. 4. Pp. 85-93. (In Russ.).
8. Endogur A.I., Vainberg M.V., Jerusalem K.M. Cellular structures. Selection of parameters and design. M.: Mechanical Engineering. 1986. 200 p. (In Russ.).
9. Giusto G., Totaro G., Spena P., De Nicola F., Di Caprio F., Zallo A., Grilli A., Mancini V., Kiryenko S., Das S., Mespoulet S. (2021). Composite grid structure technology for space applications. Materials Today: Proceedings. vol. 34 (1). Pp. 332–340.
10. Khakhlenkova A.A. A mesh cylindrical shell with a circular crosssection and variable stiffness // Bulletin of SibGAU. 2016. No. 4. Pp. 1028-1036. (In Russ.).
11. Recommendations for the use of the sorting system "Sort-V" based on a single rigid grid for trawling Arctic-Norwegian cod. Murmansk: PINRO Publishing House. 1996. 14 p. (In Russ.).
12. Shevchenko A.I., Maiss A.A., Akimova O.V. Analysis of existing means of selectivity of trawl systems in the pollock fishery // Scientific works of Dalrybvtuz. 2014. Volume 32. Pp. 42-50. (In Russ.).
13. Selective lattices. URL: http://www.concept-ltd.ru/8760182841 (accessed: 12/22/2022).
14. Sorting system. URL: http://sevrybproject.ru/ru/sortirovochnayasistema (date of reference: 12/22/2022).
15. Nedostup A.A. Experimental hydromechanics of fishing gear. M.: Morkniga. 2014. 363 p. (In Russ.).
16. Belov V.A. Hydrodynamics of threads, nets and net fishing gear. Kaliningrad: Ed. JSC MariNPO and Kaliningrad Technical University. 2000. 202 p. (In Russ.).
17. Nedostup A.A., Razhev A.O. Mathematical model of interaction of a spacer trawl board with an aquatic environment // Marine intelligent technologies. No.3 (37). Vol.1. 2017. pp. 154-157. (In Russ.).
18. Nedostup A.A., Razhev A.O. Software for the study of hydrodynamics of spacer trawl boards // Marine intelligent technologies. No.3 (37). Vol.1. 2017. Pp. 168-173. (In Russ.).
19. Zhou C., Xu L., Hu F., Qu X. (2015). Hydrodynamic characteristics of knotless nylon netting normal to free stream and effect of inclination. Ocean Eng. 110. Pp. 89-97.
20. Zou B., Thierry N.N.B., Tang H., Xu L., Zhou C., Wang X., Dong S., Hu F. (2021). Flow field and drag characteristics of netting of cruciform structures with various sizes of knot structure using CFD models. Appl. Ocean Res. 106. 102466.
21. You X., Hu F., Takahashi Y., Shiode D., Dong S. (2021). Resistance performance and uidow investigation of trawl plane netting at small angles of attack. Ocean Eng. 236. 109525.
22. Aliev R.Z. On the dependence of the hydrodynamic coefficients of flat network samples on the Reynolds number // Fisheries. 1960. No. 7. Pp. 66-67. (In Russ.).
23. Belov V.A. Hydrodynamics of threads nets and mesh structures. Kaliningrad: MariNPO Publishing House. 2000. 201 p. (In Russ.).
24. Naumov V.A., Boyarinova N.A. Analysis of experimental data obtained during the transverse flow of flat networks in the transition region of resistance. Kaliningrad: Izvestiya KSTU. 2011. No. 20. Pp. 195-202. (In Russ.).
25. Naumov V.A., A.V. Kikot Empirical dependences for the coefficient of hydrodynamic resistance Cx // Proceedings of the VIII International Scientific Conference dedicated to the 80th anniversary of the University: collection of scientific tr. / KSTU. Kaliningrad: Publishing house of FGOU VPO "KSTU". 2010. Part 1. Pp. 255-257. (In Russ.).
26. Voynikanis-Mirsky V.N., Vishnevsky E.E. On the resistance of the net elements of stationary fishing gear // Fisheries. 1971. No.8. Pp. 47-50. (In Russ.).
27. Accusantsev A.L. Calculation of resistance and lifting force of flat nets // Fisheries. 1978. No. 1. Pp. 50-52. (In Russ.).
28. Rosenstein M.M., Nedostup.A.A., Mechanics of fishing tools. M.: Morkniga. 2011. 528 p. (In Russ.).
29. Sadovnikov Yu.M. Full-scale testing of cables. Technical Report No. 19778. L. 1980. 18 p. (In Russ.).
30. Senin N.T. On the question of the resistance of networks // Collection of scientific works of Mosrybvtuz. Issue I. 1939. (In Russ.).
31. Fonarev A.L. Resistance of a round cylinder // scientific. technical conf. prof.-teacher. composition, asp. m student.: sat. tez. dokl. / KTIRPIH. Kaliningrad, 1994. Pp. 11-13. (In Russ.).
32. Friedman A.L. Theory and design of tools for industrial fishing. M.: Light and food industry. 1981. 327 p. (In Russ.).
33. Ferro R.S. (1990). Force coefficients for stranded and smooth cables. Scottish fisheries research report. № 47. p. 10.
34. Imai T. (1979). Basic studies on the plane net set the flowing water. IV: Comparative study of hydro-dynamical resistance on knotted and knotless nettings. Mem. Fac. Fish., Kagoshima Univ. Pp. 1276-1282.
35. Kim S-J., Imai T., Kikukawa H. (1991). Analysis on the curvatures of weighted netting in flow field // Nippon Suisan Gakkaishi. № 57. Pp. 403-408.
36. Miyazaki Y., Takahashi T. (1964). Basic investigation on the resistances of fishing nets-3. The resistance of plane nets // J. Tokyo Univ. Fish. № 50. Pp. 95-102.
37. Miyazaki Y. (1964). Basic investigation on the resistances of fishing nets-12. Discussion on the law of similarity for fishing nets // J. Tokyo Univ. Fish. № 50. Pp. 185-189.
38. Miyazaki Y. (1970). Basic investigations on the resistance of fishing nets-V, the resistance of ropes placed obliquely to the stream // J. Tokyo Univ. Fish. № 56. Pp. 49-86.
39. Miyazaki Y. (1970). The configuration and tension of rope and a plane net in a uniform stream // J. Tokyo Univ. Fish. №56. Pp. 87-117.
40. Paschen M., Knuths H., Winkel H.J., Ristow E. (2007). Flow investigations of net panels for small angles of attack// Methods for the development and evaluation of maritime technologies DEMAT. p. 23-34.
41. Winkel H.J. (2003). Hydrodynamic forces at a smooth cable - scroution spiral. Methods for the development and evaluation of maritime technologies. DEMaT. Pp. 251-261.
42. Yamamoto K., Hiraishi T., Kojima T. (1989). Drag of float and rope encrusted with organisms in scallop culture. Nippon Suisan Gakkashi. 55 (10). Pp. 1747-1751.
Review
For citations:
Nedostup A.A., Razhev A.O., Nasenkov P.V., Sergeev E.I., Belozer I.S. Hydrodynamics of Tight Rigid Nodeless Structures. Fisheries. 2023;(3):96-102. (In Russ.) https://doi.org/10.37663/0131-6184-2023-3-96-102