Comprehensive use of crustacean waste for the production of oligosaccharides and monomers of chitin and chitosan
https://doi.org/10.36038/0131-6184-2025-5-123-130
EDN: XBLTZJ
Abstract
This study is devoted to the investigation of chitinolytic enzymes from the hepatopancreas of two commercially exploited crabs in the North-West region: the Red King crab (Paralitho- des camtschaticus) and the snow crab (Chionoecetes opilio). The results of the study demonstrate the presence of endo- and exochitinase activity in enzyme preparations, allowing for various types of chitin biotransformation. Using these enzymes, it is possible to depolymerize chitin into low-molecular-weight chitin and chitin oligomers, as well as to obtain the monomer N-acetylglucosamine. The authors have shown that crab hepatopancreas can be used as a raw material for obtaining chitinolytic enzymes, which allow for the enzymatic transformation of natural chitin into low-molecular-weight oligosaccharides and N-acetylglucosamine.
About the Authors
V. Yu. NovikovRussian Federation
Vitaly Yu. Novikov – Candidate of Chemical Sciences, Leading Researcher at the Laboratory of Chemical and Analytical Research at the Center for Environmental Monitoring
183038, Murmansk, Akademika Knipovicha St., 6
K. S. Rysakova
Russian Federation
Kira S. Rysakova – Candidate of Biological Sciences, Head of the Laboratory of Chemical and Analytical Research at the Center for Environmental Monitoring
183038, Murmansk, Akademika Knipovicha St., 6
A. M. Mukhortova
Russian Federation
Anna M. Mukhortova – Chief Specialist of the Laboratory of Chemical and Analytical Research of the Center for Environmental Monitoring
183038, Murmansk, Akademika Knipovicha St., 6
V. A. Mukhin
Russian Federation
Vyacheslav A. Mukhin – Doctor of Biological Sciences; Head of the Branch
183038, Murmansk, Akademika Knipovicha St., 6
References
1. Khiari Z. (2022). Sustainable upcycling of fisheries and aquaculture wastes using fish-derived coldadapted proteases // Front. Nutr. Vol. 9. 875697. https://doi.org/10.3389/fnut.2022.875697
2. Khiari Z. (2024). Enzymes from fishery and aquaculture waste: Research trends in the era of artificial intelligence and circular bio-economy // Mar. Drugs. Vol. 22, No. 9. 411. https://doi.org/10.3390/md22090411
3. Valimaa A.L., Makinen S. et al. (2019). Fish and fish side streams are valuable sources of high-value components // Food Qual. Saf. Vol. 3, No. 4. Pp. 209-226. https://doi.org/10.1093/fqsafe/fyz024
4. Verissimo N. V., Mussagy C. U. et al. (2021). From green to blue economy: Marine biorefineries for a sustainable ocean-based economy // Green Chem. Vol. 23. Pp. 9377-9400. https://doi.org/10.1039/D1GC03191K
5. Khiari Z., Rico D., Martin-Diana A.B., Barry-Ryan C. (2014). Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates // J. Sci. Food Agric. Vol. 94, No. 8. Pp. 1663-1671. https://doi.org/10.1002/jsfa.6476
6. Singh S., Negi T. et al. (2022). Sustainable processes for treatment and management of seafood solid waste // Sci. Total Environ. Vol. 817. 152951. https://doi.org/10.1016/j.scitotenv.2022.152951
7. Ponomareva T., Timchenko M. et al. (2021). Prospects of red king crab hepatopancreas processing: fundamental and applied biochemistry // Recycling. ol. 6. No. 1. 3. https://doi.org/10.3390/recycling6010003.
8. Novikov V.Yu., Rysakova K.S. et al. (2023). King crab gills as a new source of chitin/chitosan and protein hydrolysates // Int. J. Biol. Macromol. Vol. 232. 123346. https://doi.org/10.1016/j.ijbiomac.2023.123346
9. Mukhin V.A., Novikov V.Yu. (2001). Enzymatic hydrolysis of proteins from Crustaceans of the Barents Sea // Appl. Biochem. Microbiol. Vol. 37, No. 5. Pp. 538542. https://doi.org/10.1023/A:1010218712622
10. Мелентьев А.И., Актуганов Г.Э. Ферменты деградации хитина и хитозана // Хитозан / Под ред. К. Г. Скрябина, С. Н. Михайлова, В. П. Варламова. – М.: Центр «Биоинженерия» РАН. 2013. С. 71-114
11. Melentyev A.I., Aktuganov G.E. (2013). Enzymes of chitin and chitosan degradation // Chitosan / Edited by K. G. Scriabin, S. N. Mikhailov, V. P. Varlamov. Moscow: Center "Bioengineering" RAS. Pp. 71-114. (In Russ)
12. Salma U., Uddowla Md. H. et al. (2012). Five hepatopancreatic and one epidermal chitinases from a pandalid shrimp (Pandalopsis japonica): Cloning and effects of eyestalk ablation on gene expression // Comp. Biochem. Physiol. B Biochem. Mol. Biol. Vol. 161, No. 3. Pp. 197-207. https://doi.org/10.1016/j.cbpb.2011.11.005.
13. Ye C., Lu Z. et al. (2019). Cloning and expression analysis of chitinase-3B from giant freshwater prawn (Macrobrachium rosenbergii) during molting cycle // J. Fish. China. Vol. 43, No. 4. Pp. 751-762. https://doi.org/10.11964/jfc.20180511272.
14. Liu M., Chen C. et al. (2021). Chitinase involved in immune regulation by mediated the toll pathway of crustacea Procambarus clarkii // Fish Shellfish Immunol. Vol. 110. Pp. 67-74. https://doi.org/10.1016/j.fsi.2020.12.015.
15. Lv J., Liu P. et al. (2013). Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation // PLoS ONE. Vol. 8, No. 12. e82155. https://doi.org/10.1371/journal.pone.0082155.
16. Zhou K., Zhou F. et al. (2017). Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen stress // Fish Shellfish Immunol. Vol. 62. Pp. 31-40. https://doi.org/10.1016/j.fsi.2017.01.012
17. Fujimori K., Fukushima H., Matsumiya M. (2018). Molecular cloning and phylogenetic analysis of a chitin deacetylase isolated from the epidermis of the red snow crab Chionoecetes japonicas // Advances in Bioscience and Biotechnology. Vol. 9, No. 1. Pp. 52-62. https://doi.org/10.4236/abb.2018.91005
18. Li X., Diao P. et al. (2021). Molecular characterization and function of chitin deacetylase-like from the Chinese mitten crab, Eriocheir sinensis // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Vol. 256. P. 110612. https://doi.org/10.1016/j.cbpb.2021.110612
19. Proespraiwong P., Tassanakajon A., Rimphanitchayakit V. (2010). Chitinases from the black tiger shrimp Penaeus monodon: Phylogenetics, expression and activities // Comp. Biochem. Physiol. B Biochem. Mol. Biol. Vol. 156, No. 2. Pp. 86-96. https://doi.org/10.1016/j.cbpb.2010.02.007.
20. Dahiya N., Tewari R., Hoondal G. S. (2006). Biotechnological aspects of chitinolytic enzymes: a review // Appl. Microbiol. Biotechnol. Vol. 71, No. 6. Pp. 773-782. https://doi.org/10.1007/s00253-005-0183-7
21. Affes S., Aranaz I. et al. (2019). Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan // Int. J. Biol. Macromol. Vol. 139. Pp. 558-569. https://doi.org/10.1016/j.ijbiomac.2019.07.116
22. Рысакова К. С., Новиков В. Ю., Мухин В. А., Серафимчик Е. М. Гликолитическая активность ферментного препарата из гепатопанкреаса камчатского краба Paralithodes camtschaticus // Прикл. биохим. микробиол. 2008. Т. 44, № 3. С. 281-286. https://doi.org/10.1134/S0003683808030046
23. Rysakova K. S., Novikov V. Yu., Mukhin V. A., Serafimchik E. M. (2008). Glycolytic activity of an enzyme preparation from the hepatopancreas of the Kamchatka crab Paralithodes camtschaticus. biochim. microbiol. vol. 44, No. 3. Pp. 281-286. https://doi.org/10.1134/S0003683808030046. (In Russ)
24. Westermeier R. (2016). Electrophoresis in Practice. A Guide to Methods and Applications of DNA and Protein Separations / Fifth Edition. – Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. 471 p.
25. Reissig J. L., Strominger J. L., Leloir L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars // J. Biol. Chem. Vol. 217, No. 2. Pp. 959-966. https://doi.org/10.1016/S00219258(18)65959-9.
26. Decleire M., De Cat W. et al. (1996). Determination of endo- and exochitinase activities of Serratia marcescens in relation to the culture media composition and comparison of their antifungal properties // Chitin Enzymology. Vol. 2 / Ed. by A. A. Muzzarelli. Grottammare, Italy: Atec Edizioni. Pp. 165-169.
27. Лисицын А.Б., Иванкин А.Н., Неклюдов А.Д. Методы практической биотехнологии. Анализ компонентов и микропримесей в мясных и других пищевых продуктах. – М.: ВНИИМП. 2001. 408 с.
28. Lisitsyn A.B., Ivankin A.N., Neklyudov A.D. (2001). Methods of practical biotechnology. Analysis of components and micro-admixtures in meat and other food products. Moscow: VNIIMP. 408 p. (In Russ)
29. Новиков В.Ю., Рысакова К.С., Шумская Н.В., Мухортова А.М. (2024). Экстракция и фракционирование ферментов с разной субстратной специфичностью из гепатопанкреаса Paralithodes camtschaticus // Наука и образование. Материалы Всерос. науч.-практ. конф., Мурманск, 1-9 декабря 2022 г. В 2 ч. Ч. 2. – Мурманск: Издво МАУ. С. 260-268. https://www.elibrary.ru/item.asp?id=62683084.
30. Novikov V.Yu., Rysakova K.S., Shumskaya N. V., Mukhortova A.M. (2024). Extraction and fractionation of enzymes with different substrate specificity from the hepatopancreas Paralithodes camtschaticus // Science and Education. Proceedings of the All-Russian Scientific and Practical Conference, Murmansk, December 1-9. 2022 At 2 p.m. Part 2. – Murmansk: Publishing House of MAU. Pp. 260-268. https://www.elibrary.ru/item.asp?id=62683084. (In Russ)
31. Klimova O. A., Borukhov S. I. et al. The isolation and properties of collagenolytic proteases from crab hepatopancreas // Biochem. Biophys. Res. Commun. 1990. Vol. 166, No. 3. Pp. 1411-1420. https://doi.org/10.1016/0006-291X(90)91024-M. (In Russ)
32. Sakharov I. Yu., Litvin F. E., Artyukov A. A. (1994). Purification and characterization of two serine collagenolytic proteases from crab Paralithodes camtschatica // Comp. Biochem. Physiol. B: Biochem. Mol. Biol. Vol. 108, No. 4. Pp. 561-568. https://doi.org/10.1016/0305-0491(94)90110-4
Review
For citations:
Novikov V.Yu., Rysakova K.S., Mukhortova A.M., Mukhin V.A. Comprehensive use of crustacean waste for the production of oligosaccharides and monomers of chitin and chitosan. Fisheries. 2025;1(5):123-130. (In Russ.) https://doi.org/10.36038/0131-6184-2025-5-123-130. EDN: XBLTZJ